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Abstract - The integration of modern CAD tools with formal verification envi-
ronments require translation from hardware description language to verifica-
tion logic. A signal representation including both unknown state and a degree
of strength indeterminacy is essential for the correct modeling of many VLSI
circuit designs. A higher-order logic theory of indeterministic logic signals is
presented.

1 Introduction

As higher transistor counts increase the complexity of VLSI circuits and the number of
potential test cases explode, formal verification methods promise value in design fault
exclusion. Before verification is accepted by design engineers, stand alone verification tools
that are used in the academic research arena must be integrated with the CAD tools being
used by VLSI designers. One major benefit of this integration is that VLSI designers will
enjoy increased confidence that abstract behavioral models are correct. There are several
reasons a VLSI designer may choose to use abstract behavioral models. In a top-down
design, a behavioral description may be used to simplify circuit understanding before the
implementation is designed. A behavioral model can be utilized as part of a simulation of
the entire system at an early date. After the circuit structure is designed and modeled,
the logic simulation of complex systems can become very slow. The simulation can be
made faster by replacing circuit blocks with the corresponding behavioral model. The
problem with these design approaches is that there is currently no way to relate the circuit
structural model to the abstract behavioral model. Having a verification tool available in
the VLSI CAD tool suite would allow these models to be related through mathematical
analysis.

The hardware description languages (HDL) used by VLSI CAD tools can provide the
link between these tools and the verification environment. Engineers can design using
the CAD tool HDL and this description can be automatically translated for use in the
verification tool. This paper examines the translation of logic signal representations from
the BOLT (Block Oriented Logic Translator) HDL, used in the NOVA simulation engine,
to the HOL theorem proving system.
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2 HOL

HOL is & general theorem proving system developed at the University of Cambridge [4,6)
based on Church’s theory of simple types, or higher-order logic. Higher-order logic is suit-
able for specifying all aspects of hardware, including both structure and behavior [6,8].
In using higher-order logic, predicates are defined to represent both circuit primitives and
behavioral definitions [4]. First-order logic is well suited to represent simple combinational
circuits, but not sequential circuits. In higher-order logic, variables are allowed to range

over functions and predicates which make Vit__‘s‘yitarblxcjif;otr?_rc_agreﬁsen?tinigi sequential circuit
behavior [8]. HOL is not an automated theorem prover but is more than simply a proof

checker, falling somewhere between these two extremes. Translation from BOLT descrip-
tions to HOL predicates requires that HOL primitives be defined to correspond to the
BOLT circuit representations. - - o 7 '
Symbols in HOL are represented by strings of ASCII characters. Conjunction, dis-
junction, negation, implication, and equality are represented by /\, \/, 7, ==>, and
= respectively. Universal quantification (for all) is symbolized ! and existential quan-
tification (there exists) is ?. The function composition operator is o and the conditional

expression “if a then b else ¢” is symbolized a => b | <.

Few modern VLSI circuits are designed using only classical logic gates [3,10]. In designs
using pass-transistor, tri-state, and pre-charge logié, it is common for circuit nodes to be
driven from multiple circuit elements. These multiple drivers are designed to have differing
drive strengths in order for one to dominate over another in cases of contention. The drive
strength can be considered to be closely related to current drive (charge sourcing) capability
[7,2]. The signal values represented in the NOVA simulation engine are an extension of

Bryant’s lattice theoretic approach [7,11]. In the lattice theoretic approach the elements
in the domain of signal values represent the combination of logic state, from the set Trus,
False, and Unknown; and a signal strength. These signal values form a partially ordered
set with their order based on strength dominance when circuit output values are combined.

While Bryant later abandoned the lattice theoretic approach [2] stating “while this
approach at first seems very elegant, it cannot adequately describe the effects of transistors
in the X (Unknown) state, ” Cameron and Shovic have shown that the problem with the
Unknown state can be corrected by extending the domain of signal values to include some
degree of strength indeterminacy [3]. Thus, the signal values are extended to represent
both logic states and a range of signal strength.

The Unknown state can be the result of a node connected to two drivers, one driving
to a True and the other driving to a False, neither driver having sufficient strength to
dominate the other; or simply a node whose voltage is not yet known. Combining the cases
of “invalid” logic level and “valid but not known” into a single Unknown state simplifies

the simulation algorithm but may make the simulator pessimistic since it will propagate
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the Unknown state when resolving some circuit nodes[2].

We refer to the combination of state and strength information as STATES. The STATES
representation presented here is consistent with that presented in {3,10] except the total
number of strengths N, is extended to include a weakest strength, Nil, which represents a
node that is disconnected from all charge sources. By definition, a signal being driven by
the Nil strength must be at the Unknown state.

3.1 Representation of STATES

Given the set of states True, False, and Unknown and a fully ordered set of strengths
01,03, ..., and oy we can define STATES. The STATES corresponding to the states True and
False are represented as a triple Kbd where:

K is 1 or 0 representing the logic state True or False;

bd represents a indeterminate range of strengths where:

b is the strongest possible strength (0; < b < on_;) which sets a lower bound on
the strength of a signal that can overdrive this state;

d is the weakest possible strength (b < d < on_;) which sets a upper bound on the
strength of a signal that this state can overdrive.

The STATES corresponding to the Unknown state are represented as a triple Xpq where:
X represents the Unknown state;

p is the strongest possible strength driving toward 0 (¢, < p < on_1) which sets a lower
bound on the strength of a signal that can overdrive this state to a 1;

q is the strongest possible strength driving toward 1 (o1 < q < on-1) which sets a lower
bound on the strength of a signal that can overdrive this state to a 0.

3.2 The Number of STATES

For N strengths the number of True and False STATES is:

TF_STATES(N)=2((N — 1)+ (N —2)+...+1) = (N — 1)(N) (1)
For the Unknown state the number of STATES is:

X_STATES(N)=(N-1)*+1 (2)

The plus one term in equation (2) represents the combination of Unknown state and
weakest strength, oy = Nil. This STATE is referred to as Nil. Thus, the total number of
STATES for N strengths is equal to:

TOTAL_STATES(N) = 2N? — 3N +2 (3)
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Figure 1: Base Case Signal Lattice (N=2)

4 STATES Theory

A complicated algorithm for determining the result of combining STATES is presented
in [3]. This algonthm is not satxsfactory for use in HOL. We have developed a lattice
that describes the result of joining two signals. In this lattice theoretic approach to signal
strengths, the join (least upper bound) operation represents the resolution of contending
circuit elements [11].

The lattice structure is described through the notion of immediate superiors or covers.
For two elements, a and b of a partially ordered set, a covers b 1f and only if @ > b and
there exists no element z of the partially ordered set such that a > z > b [1]. A list of all
of the elements and covers completely describe a lattice. The covers can also be used to
define a graph of the lattice. The vertices of the graph are the elements and the segments
of the graph represent the covers. If the graph is drawn such that whenever z covers y, the

vertex z is higher than the vertex y, it is called a “Hasse diagram” of the lattice [1].

4.1 Defining STATES Lattice Structure

Given the base case N = 2 (N = 11is a trivial case of one single STATE, Nil) there are four
STATES and no strength indeterminacy, meaning there is only a single value (¢;) within
the range of possible strengths. There are four covers and the lattice Hasse diagram is as
presented in [7,11], a simple diamond (Figure 1).

To extend a N strength Hasse diagram (lattice) to N + 1 strengths:

1. Add three STATES and four covers to form a new diamond at the bottom of the N
strength diagram by replacing Nil with Xonoy, adding Oocyony and loyoy each
covered by Xoyon and placing Nil at the bottom of the diagram covered by both
Oonyon and lonyon.

2. For each M = N to 2, by -1, add the following STATES and covers:

(AT, TR TN TR
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(a) Xom-10n covered by Oopr_10n-1 and covering Xopyon
(b) Xonopm-1 covered by loy_10n-1 and covering Xomon
(¢) 0op-10n covered by Xop_10n and covering Ooyon

(d) lopm_10n covered by Xoyop -1 and covering loyon

4.2 The Number of Covers

The total number of covers for N strengths is equal to:
COVERS(N) =4N? — 10N +38 (4)

4.3 The Lattice Structure for NOVA
The NOVA simulation engine and BOLT HDL have been selected for this research so that

we may have access to commercial-scale designs written by nonacademic VLSI designers
while a translation tool to HOL is developed. In NOVA, N = 4 and oy = a (active), o3 =7
(resistive), o3 = f (float) and o4 = Nil. Note that float > Nil and can be used to represent
signal levels at charged capacitive nodes. For N = 4, equation (3) yields 22 STATES and
equation (4) yields 32 covers. The Hasse diagram for the STATES and covers for NOVA
is shown in figure 2. In addition to identifying the list of covers required to define the
lattice structure in the verification logic, the Hasse diagram also provides a quick, visual
understanding of the resolution of joined STATES.

5 Implementing STATES in HOL

The HOL system includes a type definition package that allows the user to define new
types and prove theorems about essential properties of the new type. The type package
automatically carries out much of the necessary formal proof required for a new type
definition. Theorems about the new type are proven, rather than simply postulating
axioms for the new type, in order to avoid the introduction of inconsistency into the logic
[9]. A new type for signal values, called strength, is defined in HOL by enumeration of all
of the STATES. Properties proven about the new type include each value being distinct, an
induction theorem, and a case analysis (perfect induction) theorem. The STATES lattice
is defined by enumeration of the covers and the function join is defined to be the least
upper bound. Once the join function definition is complete, consistency of proofs that
utilize join are insured by formal proof of the lattice theoretic obligations [11] for the join
operation. These obligations are:

1. Idempotence. For all a STATES, join a ¢ = a.
2. Commutativity. For all a and b STATES, join a b = join b a.

3. Associativity. For all a, b and ¢ STATES, join a (join b ¢) = join (join a b) c.
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Figure 2: Signal Lattice for N=4 (NOVA)
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Figure 3: Memory Cell Schematic Diagram

4. Existence of bottom. For all ¢ STATES, join a Nil = a.

5.1 STATES Abstraction Function

Typically a behavioral specification is defined in terms of boolean values. An abstraction
function is required to relate STATES, used in structural specifications, to boolean values.

STATES_ABS sig = ((sig=laa)\/(sig=lar)\/(sig=lrr)\/
(sig=1laf)\/(sig=1rf)\/(sig=1ff)) => T |
((sig=0aa)\/(sig=0ar)\/(sig=0rr)\/
(sig=0af)\/(8ig=0rf)\/(sig=0££)) => F |
ARB

The Unknown STATES are assigned a value ARB, defined to be an arbitrarily chosen boolean
value.

6 Theory Demonstration

A static memory circuit cell, implemented with gate level and pass transistor primitives, is
used to demonstrate the STATES theory (Figure 3). Without a signal value representation
that realizes output dominance this circuit cannot be correctly modeled. Fundamental to
the operation of this circuit is that the output strength of pass-transistor M1 dominates
the output of inverter Inv2 to force node n1 to the state of the input d while the gate g
is True (high voltage). The feedback inverter Inv2 acts to store the state, by dominating
the pass-transistor after the gate goes False, turning the transistor off.

6.1 The Circuit Primitives

The memory cell structure includes three predicate definitions; a pass-transistor element,
inverter elements, and the JOIN operation. Time is represented as a number (num) stream
and circuit signals are defined to be functions of type num to type strength.
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The behavioral model of the cell is not defined for the gate input being at an unknown
state. A simplified pass-transistor model is used that defines that the signal at the drain
1s equal to the signal at the source if the gate is True, else it is Nil.

NTRAN (g,s,d) =
!t
= ((g t =laa)\/(g t =lar)\/
(g t =1rr)\/(g t =laf)\/
(g t =1rf)\/(g t =1ff)) => s t |
Nil

The inverter predicate has five arguments. The first three arguments are of type
strength and define the possible inverter output STATES. The first is the output STATES
for a True output, the second for a False output, and the third the Unknown state output.
The Unknown output value is derived from the strongest True and False strengths. The
fourth and fifth arguments are signal functions of type num to type strength The fourth
is the lnverter mput and the fifth is the output. ~ - -~ -

INV ls Os Xs (:m,out) =

' ¢.
out t =(((in t =laa)\/(in t =lar)\/
(in t =1rr)\/(in t =laf)\/ - ==
(in t =1rf)\/(in ¢t =1ff)) => 0s |
((in t =0aa)\/(in t =0ar)\/
(in t =0rr)\/(in t =0af)\/
(in t =0rf£)\/(in t =0£ff)) => 1s |
Xs )
6.2 JOIN

The JOIN predicate performs two operations. It determines the resulting signal value of
combining circuit outputs by applying the join function. The second operation is related
to the sequential behavior of a charge storage node. The capacitance of a node may result
in a time delay when the node is driven to a new signal level, The delay time increases as
the strength of the driving signal decreases. This sequential behavior is modeled as having
a variable delay, whose length is based on the strength of the join function result. [5,7].
The Hasse diagram shows the relative strength of STATES and can be used to abstract
the delay values for individual STATES by segregating them into horizontal bands on the
diagram. All STATES within a common band have the same delay and the delay is longer
for lower bands. For cases where it is desired to model different delays for rise and fall
times the diagram can be segregated right from left also.

The demonstration cell is modeled as having two possible delays. When the pass-
transistor is turned on, the storage node at the join is driven by an active strength and
the delay is defined to be zero. When the pass-transistor is turned off, the storage node



3rd NASA Symposium on VLSI Design 1991 10.2.9

is driven by the resistive strength of the feed-back inverter and the delay is defined to be
one.

JOIN (s’,s’’,s:num->strength) =
1 t. let sig = join (s’ t) (s?’ t) in

((sig = Daa) \/

(sig = laa) \/

(sig = Xaa) \/

(sig = Xar) \/

(sig = Xra)) => (s t = sig) |

(s (t+1) = sig)

6.3 The Structural Description
A BOLT description of the cell is:

MODULE Q .CELL G D;

BEGIN

N1 .NTRAN G D;

Q .INVR Ni;

N1 .INVR Q (STR=’RR’);
END;

The STR="RR’ parameter in the second INVR invocation defines the output strength of that
inverter as resistive. The default value used for the first invocation is active. The HOL
structural specification of the cell is:

cell_IMP (d,g,q) =

? n1 n1’ ni1’’:num->strength .
NTRAN (g,d,n1’) /\
INV laa Daa Xaa (ni,q) /\
INV 1lrr Orr Xrr (q,n1’’) /\
JOIN (n1’,ni1’’,n1)

6.4 The Behavioral VD'escrripti'on o

When the gate of the pass-transistor is True the cell is writing the input and the output,

q, follows as the inverse of d. When the gate is False the cell is storing the previous data.
The HOL behavioral description is:
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cell SPEC (d,g,q) =
't,
®t) = (gt ="d¢) I
(q (t+1) = q t)

6.5 The Cell Verification

Because the operatlon of the cell requires that the puj:put of the pass-transistor dominate
the resistive strength output of INV2 and the pass-transistor is not an amplifier, there is a
validity condition that the signal applied to input d must be stronger than resistive. This

condition is required for proper circuit operatlon and is not sunply a venﬁcatlon artifact.

Validi (d) =

' ¢,

(dt=1aa) \/ (dt = Oaa)

Because the behavior of the cell is defined only for boolean value signals at the gate,
there is a validity condition for the gate that it be either a True or False state. This
condition yields a 12 way case analysis in the proof, but is easily reduced to needing to
consider only the two cases of writing and storing.

Valid2 (g) =

LI A
(gt =1laa) \/ (gt = lar) \/ (g t = 1rr) \/
(gt =1laf) \/ (gt =1rf) \/ (g t = 1££) \/
(g t = 0Daa) \/ (gt = 0ar) \/ (g t = Orr) \/
(gt =0af) \/ (gt =0rf) \/ (g t = 0ff)

The verification of the cell entails proving that the cell structural description and
validity conditions logically imply the behavioral specification. The theorem proven is:

|- (Validt (d) /\ Valid2 (g) /\ cell_IMP(d,g,q)) ==>
cell SPEC(STATES_ABS o d, STATES_ABS o g,STATES_ABS o q)

7 Future Work

The theory of signal lattices presented in this paper is an important first step in linking
BOLT and HOL. Future steps include:

1. Developing and validating a set of HOL theories corresponding to the prumtlve com-
ponents in the NOVA library.

2. Writing a formal semantics for BOLT.

3. Embedding BOLT’s formal semantics in HOL.

These steps do not include work on translating NOVA behavioral models to HOL, a diffi-
cult, but necessary task.
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8 Conclusion

The first step in the integration of CAD VLSI design tools with a verification tool is the
translation of the HDL representations into the verification logic. A verification logic the-
ory has been presented for reasoning about an indeterministic signal value representation
based on a lattice approach. This work is necessary because the previous algorithm for
joining indeterministic signal values is not suitable for a verification logic environment.
The suitability of the lattice approach is demonstrated through the verification of a static
memory cell. The lattice diagram presented also quickly provides to users the result of
combining different valued indeterminate signals.
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Abstract — A formal specification of VLSI state machines based on a sequence
invariant architecture is presented. The behavioral description represents a
logical description of any synchronous state machine. The structural specifica-
tion represents an adoptive architecture developed using VLSI technology to
implement the state machine. This specification becomes a tool for future ver-
ification and specification of state machines using dedicated machines and/or
alternative technologies. The verification of the state machine is done in HOL,
a theorem proving system. Using HOL, the verification shows analytically that
the circuit structure has the desired behavior.

1 Introduction

With the advancement of integrated circuit technology, the need for new methods of en-
suring design correctness is becoming more prominent. Simulation remains the dominant
method in use, but, recently, interest has grown in using formal logical analysis to show
the correctness of digital systems.

Formal verification of hardware involves using theorem-proving techniques to verify
that a stated behavioral definition of a circuit is a logical consequence of the structural
description of the circuit, i.e., proving that the structure of the circuit forces it to behave
as stated. This paper presents a formal specification and verification of a general state
machine. The specification describes the behavior and structure of the state machine. The
behavioral specification is a logical representation of a state machine. Using a particular
design in VLSI technology, a structural description based on the Sequence Invariant Ar-
chitecture is described. The structure clearly specifies how components are connected and
built to achieve the operation of the state machine. The verification shows, by analysis,
that the structural specification implies the behavioral specification using a theorem prov-
ing system known as HOL [1]. Hence, the VLSI architecture is capable of implementing
any state machine.

2 The HOL System

As described by Birtwistle and Subrahmanyam (3], the HOL system (‘HOL’ standing for
‘higher order logic’) is designed to facilitate the interactive generation of formal proofs. A
logic in which problems can be expressed is interfaced to a programming language in which
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proof procedures and strategies can be encoded. The combination enables deduction in
logic (in the sense of chains of primitive inference steps) to be produced by invocation of
programming constructs at a higher level of abs’crac}'ﬁess =

The logic part of HOL is conventional higher-order logic. New types, constants and
axioms can be introduced by the user, and organized in logic theories. The programming
language of HOL is ML (for ‘meta-language’). The type discipline of ML ensures that the
only way to create theorems in the object logic is by performing proofs; theorems have
the ML type thm, objects of which can only be constructed by the application of interface

rules to other theorems or axloms

3 Seque,, tlal Clrcults Overv1ew

Sequentlal cxrcuxts are categonzed as exther synchronous or asynchronous dependmg upon
whether or not the behavior of the circuit is clocked at discrete instants of times. The
operation of synchronous sequential circuits (the topic of this paper) is controﬂed by a
synchronizing pulse signal called a clock pulse or simply a clock.

Sequential machines are usually represented by state dxagrams or state tables (ﬂow
tables). A flow table has a row corresponding to every internal state of the machine and
a column corresponding to every possible input. The entry in row ¢; and column I,
represents the next state produced if I,, is applied when the machine is in state ¢;. Table
1 shows a flow table for an arbitrary circuit with six-states and three inputs. Once the
flow table is constructed for a given circuit, a state assignment is performed. A state
assignment is the encoding of the states of the flow table with the internal state variables
(¥1,Y2y--,Yn). Table 2 shows the state assignment and the next state entries assignment
for Table 1. Finally, the next state equations are derived from the state assignment using
Karnaugh map techniques. We can also derive an equation that describes the output
behavior from the flow table.

3.1 SISM Overview

An adaptive hardware architecture has been developed [2], that enables the designer to
design any sequential circuit based on the width of the machine w, and the number of con-
trol inputs I, without a knowledge about the sequence to be mcorporated This adaptive
architecture is called a Sequence Invariant State Machine (SISM) design.

With the SISM realization, any flow table can be implemented without a change in the
hardware configuration. That is given w, and I, a hardware circuit is easily derived, that
can implement any state machine that has a maximum of I control inputs, and 2* internal
states.

3.2 Architecture And Operation
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I I I
AlC,1|B,1 A0
B|D,0{C,1]|B,0
C|E,0|D,0|C,0
D{F,1{E1|D,1
E|A0|F,0|E1
F|B,0|A1|F1
Table 1: General 6-states, 3-input flow table.
oYz Y3 I I I
0 0 0 A|lO 1 0,1]0 0 1,10 0 0,0
o o 1 B|O 1 1,0(0 1 0,1|0 0 1,0
o 1 0 C|10 00/0 1 1,0{0 1 0,0
0 11 D|1 0 1,11 0 0,10 1 1,1
i1 o0 0 E{0 0 001 0 1,0|1 0 0,1
1 0 1 F{0o 0 1,0{0 0 0,11 0 1,1
1 1. 0 G|O0O O 0,0/0 O O,0{0 O 0,0
1 1 1 H|0 O 0,0/0 O O0,0{0 O 0,0

Table 2: State Assignment for Table 1.

Figure 1 shows a general SISM architecture, this architecture can be used to implement
one of the next state variables in Table 2.

I y
All
- . N t
Destination Steaxtes .
State Input ] Next v D yi
Codes —+—> Switch t State FF ?
Matrix Logic

Figure 1: General SISM Architecture.

The architecture contains the following components:

o The destination state codes are derived from the next state entries in the state
assignment table by inspection. For example, the destination state codes for state B
and state variable y; are the next state bits Y; associated with state B. Therefore, the
destination state codes for state B are (000,110,101) under control inputs (I; I3; I3)
and variables (y1;v2;ys) respectively. One way to implement those codes is to use
constants, that is, presenting ones and zeros at the input of the structure. Also, they
could be programmed into the structure using various memory devices [3].
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o The input switch matrix is combinational logic that produces all the possible next
state entries for each current control input.

o The next state logic consists of an independent path for each of the present states in
the state assignment flow table

» The storage element is a D- FF that preserves the present state.

The operation of the architecture is as follows. The current control input selects the set
of potential next states that the circuit can assume (input column in the flow table). The
present state vanables select the exact next state (row in the flow table) that the circuit

will assume at the next clock pulse.

4 Formal Spec1ﬁcat10n

The previous section presented a descnptxon of the SISM ‘architecture and operatlon This
section presents the formal specification of the SISM architecture. The behavioral specifi-
cation is introduced first and then a structural implementation is described.

w G C5(T)

L1

DATA CS(T+1)
— SM DEVICE —>
CLR LD

Figure 2: General state machine device

4.1 The Behavioral Specification

A general behavioral description of all state machines can be specified by defining a pred-
icate that relates the inputs and outputs and defines the state transition. Figure 2 shows
a general state machine device. The behavior of the state machine device can be specified
by a predicate sism-spec, that is true only when the combination of the values of the
variables w, g, data, clr, 1d; and the state variable cs is one that could occur on the cor-
responding input and output signals of the device. The variables are references to actual
signals and data as explained below.
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e ‘w’, “(:num)”.
This represents the width of the state machine, i.e., the number of next state vari-

ables.

o ‘g, “(: time — num)”.
This is the control input to the state machine. It is represented as function associated
to time. That is at time (t), the input (g) is the control input which is a number
from zero to I. Where I is the maximum number of control inputs.

¢ ‘data’, “(: num — num — num — bool)”.
This is the destination state codes for the entire state machine. It is represented as a
function associated with the width of the state machine and the list of data for each
of the next state variables.

o ‘clr’,“(: time — bool)”.

This signal when enabled will forces the output values to be cleared to low.

o ‘Ad’, “(: time — bool)”.
This signal when enabled will load the input data to the D-ff and present it to the
output.

e ‘cs’, “(: time — num — bool)”.
This is the current state value. It is represented as function associated to time. That
is at time (t) this value will enable one path from the input to the output.

The overall behavior of the state machine is given by the following logic term:

sism-—spec =
Fdey sism_spec W g data clr 1d
(cs:num—>num—>bool) =

(¥ t:num. cs (¢+1) = (clr + — ZEROS w |
1d t — data (g t) (val w (cs t)) |
cs t))"

The predicates sism-spec asserts that the relationship between those values corresponds
to the way the state machine works in practice. That is, the next state of the machine at
time (t41) is a function of the value of the data input and the current state at time (t).

4.2 The Structural Specification

An implementation of state machines based on the sequence invariant architecture is pre-
sented. Using tools available in HOL the structure of the SISM can be described by
specifying high level descriptions of the major pieces of the SISM device and combining
them so that they correspond to the actual structure. The structure of the SISM can be
represented by a predicate sism-imp with a definition as follows:
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(liln_illp =

sism_imp v g data ¢lr 1d ¢s = (sism_imp_rec w w g data clr 1d cs)"

The predicate sism-imp-rec defines the structure of the circuit. The predicate is de-

fined rgé;;sive;lepg its width rirr;di(:ar,twirixgr the iterative structufeof the circuit. The predicate
is defined as follows:

(sism_imp_rec =
“(sism_imp_rec 0 w g data clr 1d ¢s = block 0 w g data
clr 1d cs)
A
(sism_imp_rec (n+1) w g data clr 1d cs =
((sism_imp_rec n w g data clr 1d cs) A
(block (n+1) w g data clr 1d cs )))"

The predicate block gives the structure of a single slice of the circuit, Block is defined

by conjoining the predicates that specify the behaviors of each component with the logical
connective (A) and using existential quantification (3) to hide the internal signals. The
following logic term describes block:

block =
4y Dblock id w g data clr 1d cs =
(3 outi out2.
(sel id w g data outi ) A
(mux w outi cs out2 ) A
(d_ff out2 1d clr (cs id)))"

In this definition the two internal lines (outl; out2) are hidden from the external
environment using the existential quantifier (). The definition of block states that the
- values which can appear on the external inputs and outputs of the SISM device are precisely
- those which satisfy the constraints imposed by the predicates modeling the three modules
from whichit is built. The modules that are used to define the predicate block are explained

next.

The Selector module The selector module is defined using predicates as a function.
The predicates that defines the behavior specification is a function as shown below,

sel—
b4y sel id w g data out =
¥V (¢:time) line.
(1ine < (2 EXP (SUC w))) =
(out line t) — (data id line (g t))");;
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W ID G cs ' CLR
]
OUT1 OUT2 | p (CS ID)
D : SEL | MUX FF =
LD

Figure 3: A block representing the SISM device

The selector is a device that is controlled by the control inputs. For each block there
are 2* selectors. Hence, 2¥ outputs are presented to the next device. The data input
to the selector are the destination state codes. The outputs are all the data selected by
the current control input. Referring to the definition and to Figure 3, the selector has
three external inputs and one internal output. Some of the variables are described earlier,
however the new variables are described as follow.

¢ ‘id’, “(:num)”.
This represents the current block of the state machine, i.e. if w=3 and id=1 then
the current next state variable is the first variable in the SISM block.

e ‘out’, “(: num — time — bool)”.
This function represents all possible outputs for each next state variable under the
current control input.

The MUX Module The MUX module is a function that takes 2% inputs and present
one value to the output based on the current state. The following predicate describes the

behavior of MUX:

mux=—
b4y mux w input cs out =

(V t:time. (out t) = (input (val w ((ABS w cs) t)) t))"
)i

Referring to the definition and to Figure 3, the MUX module has two external inputs, one

internal input, and one internal output. The internal inputs and outpus are described as
follows.
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e ‘input’, “(: num — time — bool)”.
This is the data provided by the previous module. It is a bit vector of length 2,
which represent all possible next state entries.

o ‘output’, “(: time — bool)”.
This is the value selected by the current state as one of the next state variable at the
next clock pulse.

The D-ff Module The D-ff module is a memory device that present the input to the
output at the next clock pulse. The predicate that describes the behavior specification is
as follows:

d—£f= i
Faeg d_£2 in 1d clr q =
(V t:time . q(t+1) = ((clxr ¢t) — F |
(1d¢t) — int | qt%))
A (g0 =F)"
)ii

Refernng to the deﬁmtlon and to Flgure 3, the fo]lowmg variables are deﬁned

e ‘in’,“(: time — bool)”.
This is the next state variable provided by the previous module to be presented to
the output at the next clock pulse.

o ‘q’, “(: time — bool)”. -
This is the output value which constztute one e of the vanables that when combmed
with the other outputs from the other blocks, result in the current state.

5 Verification

The goal of the verification is stated in logic as follows:

"V w g data clr 1d cs.
sism_imp v g data clr 1d cs =
sism_spec w g (DATA_ABS w data) clr 1d (ABS w cs)"

The goal states that the structural implementation implies the behavioral description of
the circuit, or, that the behavior follows from the structure. In the goal, DATA-ABS and
ABS are two functions used to abstract the signals w, data and cs which are defined at the
structural level to behavioral level signals. -~ -~

The verification is approximately 60% done. The proof is carried out using induction
on the width of the SISM. HOL provides mechanical support for induction, rewriting, case
analysis and other necessary proof techniques.
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6 Conclusion

This paper presents the design for a SISM that is being proven to work correctly. This
is especially significant because the design of the SISM is very general. Future work will
entail tying the structural specification to the actual circuit and using this work to verify
specific state machines based on the SISM design.
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